Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324. Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Martin, P., Greuter, H., Rifs, G., Winkler, T. \& Bellus, D. (1981). Helv. Chim. Acta, 64, 2571-2586.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1991). C47, 2708-2709

Structure of an Enantiomerically Pure Tetrahydropyranyl Ether

By Eugene A. Mash, James A. Fryling and Pamela A. Wexler
Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA

(Received 8 April 1991; accepted 2 July 1991)

Abstract

S)-Methyl 2-phenyl-2-[(2S)-tetrahydro2(2 H)-pyranyloxy]acetate, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}, \quad M_{r}=250.29$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=7.850$ (1), $b=8.211$ (1), $c=21.123$ (3) $\AA, \quad V=1361.5$ (3) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.22 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \lambda=0.71073 \AA, \mu=0.8 \mathrm{~cm}^{-1}$, $F(000)=536, T=296 \mathrm{~K}, R=0.039$ for 973 unique reflections with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$. In this diastereomer the anomeric alkoxy substituent is axially oriented. The absolute stereochemistry at the anomeric carbon is assigned as S based upon the known stereochemistry of the mandelate ester.

Experimental. The title compound (1) crystallized as white plates by slow evaporation from ether. It was prepared by acid-catalyzed tetrahydropyranylation of (S)-(+)-methyl mandelate using 3,4-dihydro2 H -pyran, followed by chromatographic separation of the resulting pyranoside diastereomers (1) and (2).

The title compound was the less polar of the two (Mash, Arterburn, Fryling \& Mitchell, 1991). Diastereomer (2) could not be induced to crystallize. The data crystal had dimensions $0.50 \times 0.50 \times 0.30 \mathrm{~mm}$. A Syntex $P 2_{1}$ diffractometer using Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$) and equipped with a graphite monochromator was used to collect the data. The lattice parameters were obtained from the least-squares refinement of 25 reflections with $20<2 \theta<30^{\circ}$. The data were collected from the hkl octant using the $\theta-2 \theta$ scan technique to a maximum 2θ of $50.0^{\circ}(0<$ $h<10,0<k<10,0<l<26)$. The ratio of peak counting time to background counting time was 2:1.

As a check on crystal and electronic stability, two representative reflections were measured after every 98 reflections. The total loss in intensity was 7.8%; a linear decay correction was applied. Lorentz and polarization corrections were also applied to the data, but no absorption correction was made. Of 1442 reflections measured, 1419 were unique and not systematically absent. Reflections having $F_{o}^{2}<$ $3 \sigma\left(F_{o}^{2}\right)$ were considered unobserved (446 reflections). The structure was solved by direct methods and refined by full-matrix least squares where the function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. H atoms were added at idealized positions and included in the refinement but restrained to ride on the atom to which they were bonded. All non-H atoms were refined anisotropically. In all, 163 parameters were refined. The refinements converged with $R=0.039$, $w R=0.047$, the e.s.d. of an observation of unit weight $=0.44$, and a final shift to e.s.d. ratio of 0.00 . The weights for each reflection were calculated using the counter weighting scheme $w=4\left(F_{o}^{2}\right) / \sigma^{2}\left(F_{o}^{2}\right)$. The minimum and maximum peaks in the final ΔF map were -0.14 and $0.18 \mathrm{e} \AA^{-3}$, respectively, and the maximum $|\Delta / \sigma|$ was 0.03σ. Scattering factors were taken from Cromer \& Waber (1974). Anomalousdispersion effects were included in F_{c} (Ibers \& Hamilton, 1964) and the values for f^{\prime} and $f^{\prime \prime}$ were those of Cromer (1974). All calculations were performed on a MicroVAX computer using SDP/VAX (Frenz, 1978). Atomic coordinates are listed in Table 1, while bond lengths and angles are listed in Table 2.* The atom-labeling scheme is shown in Fig. 1.

[^0]Table 1. Positional parameters with e.s.d.'s in parentheses

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i}, \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
O 1	0.5670 (3)	0.3476 (3)	-0.0204 (1)	4.41 (5)
O 2	0.5848 (3)	0.4782 (3)	0.0784 (1)	3.74 (4)
O3	0.6600 (4)	0.0844 (3)	0.1333 (1)	5.21 (6)
O4	0.4695 (4)	0.2573 (4)	0.1725 (1)	6.40 (7)
Cl	0.6645 (5)	0.4639 (5)	-0.0561 (2)	4.70 (8)
C2	0.5524 (5)	0.5977 (5)	-0.0826 (2)	5.21 (9)
C3	0.4550 (5)	0.6809 (5)	-0.0293 (2)	5.15 (9)
C4	0.3597 (5)	0.5544 (5)	0.0095 (2)	4.60 (8)
C5	0.4750 (5)	0.4169 (4)	0.0299 (2)	4.00 (7)
C6	0.6945 (4)	0.3575 (4)	0.1041 (1)	3.34 (6)
C7	0.5927 (5)	0.2308 (4)	0.1406 (2)	3.82 (7)
C8	0.5978 (7)	-0.0496 (5)	0.1670 (2)	7.1 (1)
C9	0.8199 (4)	0.4429 (4)	0.1480 (1)	3.15 (6)
C10	0.7595 (5)	0.5343 (5)	0.1987 (1)	4.39 (8)
C11	0.8721 (6)	0.6135 (5)	0.2379 (2)	5.35 (9)
C12	1.0448 (5)	0.6024 (5)	0.2277 (2)	5.06 (9)
C13	1.1054 (5)	0.5110 (5)	0.1773 (2)	4.64 (8)
C14	0.9925 (4)	0.4320 (4)	0.1374 (2)	3.80 (7)

Fig. 1. ORTEP (Johnson, 1965) view of the title compound.

Table 2. Bond distances (\AA) and angles $\left(^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{O}-\mathrm{Cl}$	1.438 (7)	C4-C5	1.511 (8)
$\mathrm{Ol}-\mathrm{C} 5$	1.405 (7)	C6-C7	1.522 (8)
O2-C5	1.430 (7)	C6-C9	1.523 (8)
O2-C6	1.421 (6)	C9-C10	1.392 (7)
03-C7	1.322 (7)	C9-C14	1.376 (8)
O3-C8	1.454 (8)	C10-C11	1.375 (9)
O4-C7	1.198 (7)	C11-C12	1.38 (1)
$\mathrm{Cl}-\mathrm{C} 2$	1.514 (9)	C12-C13	1.386 (9)
C2-C3	1.523 (9)	C13-C14	1.384 (8)
C3-C4	1.519 (9)		
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{C} 5$	113.7 (4)	C7-C6-C9	110.3 (4)
C5-O2-C6	113.2 (4)	O3-C7-04	123.7 (6)
C7-O3-C8	117.2 (5)	O3-C7-C6	110.6 (5)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 2$	111.5 (5)	O4-C7-C6	125.7 (6)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	110.2 (5)	C6-C9-- ${ }^{\text {c }} 0$	119.8 (6)
C2-C3-C4	109.8 (5)	C6-C9-C14	120.5 (5)
C3-C4-C5	111.7 (5)	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 14$	119.7 (6)
$\mathrm{Ol}-\mathrm{C} 5-\mathrm{O} 2$	111.9 (5)	$\mathrm{C} 9-\mathrm{Cl0}-\mathrm{Cl1}$	120.0 (7)
$\mathrm{Ol}-\mathrm{C} 5-\mathrm{C} 4$	113.2 (5)	$\mathrm{C} 10-\mathrm{Cl1-C12}$	120.4 (6)
O2-C5-C4	107.6 (5)	$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{Cl} 3$	119.7 (7)
O2-C6--C7	110.6 (5)	C12-C13-C14	120.1 (6)
O2-C6-C9	107.6 (4)	C9-C14-Cl3	120.0 (6)

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1, pp. 149-150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B, pp. 99-101. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Frenz, B. A. (1978). The Enraf-Nonius CAD4 SDP - A RealTime System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.

Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Mash, E. A., Arterburn, J. B., Fryling, J. A. \& Mitchell, S. H. (1991). J. Org. Chem. 56, 1088-1093.

Acta Cryst. (1991). C47, 2709-2711

Structure of $\boldsymbol{\varepsilon}$-Ammoniohexanoic Acid Dihydrogenphosphate

By Josef Macíček
Institute of Applied Mineralogy, Bulgarian Academy of Sciences, Rakovski Str. 92, Sofia 1000, Bulgaria
and Todorka Vladkova
Department of Rubber, Sofia Technological Univer ${ }^{\bullet} \cdot v$, Bul. Kl. Ohridski 8, Sofia 1156, Bulgaria

(Received 30 April 1991; accepted 27 June 1991)

Abstract. (5-Carboxypentyl)ammonium dihydrogenphosphate, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}^{+} . \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, M_{r}=229.17$, monoclinic, $I 2 / a \pm\left(x, y, z ; \frac{1}{2}-x, y,-z\right), a=15.108$ (3), b $=4.636$ (1), $c=28.819$ (3) $\AA, \quad \beta=98.62(1)^{\circ}, \quad V=$

1996 (4) $\AA^{3}, Z=8, D_{x}=1.526 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \mu=2.7 \mathrm{~cm}^{-1}, F(000)=976, T=292 \mathrm{~K}$, $R=0.039$ for 1682 observed reflections with I> $3 \sigma(I)$. The protonated ε-aminohexanoic acid and the

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54422 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

